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ABSTRACT

The reflection coefficient of a large wedge angle parallel-plate
waveguide operating in the TEM mode and illuminating a perfectly
conducting sheet is analyzed by wedge diffraction techniques. The
interactions between the waveguide aperture and the reflector are
represented by bouncing cylindrical waves. The scattering of these
cylindrical waves by the guide aperture produces four subsequent
component cylindrical waves, which in turn reflect back onto the
guide. These component cylindrical waves are determined through
analysis and are represented by equivalent line sources which then
couple power into the guide. The continuation of this reiteration
process then includes the contribution of the higher-order interactions
( or bounces). Good agreement is obtained between the calculated
results and measurements. The calculated results also agree with
those obtained by the plane-wave approach of Reference 1, Chapter IV
in the region of mutual validity for both analyses.
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THE REFLECTION COEFFICIENT OF A TEM MODE
PARALLEL-PLATE WAVEGUIDE ILLUMINATING A
CONDUCTING SHEET: THE LARGE WEDGE ANGLE CASE

I. INTRODUCTION

A. Statement of the Problem

Wedge diffraction theory is used in this analysis to calculate the
reflection coefficient of a TEM mode, symmetric, parallel-plate wave-
guide with large wedge angles and illuminating a perfectly reflecting
sheet. The general geometry of the problem to be considered is shown
in Fig. 1.
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Fig. 1. Parallel-plate waveguide illuminating
a reflecting sheet.



Analysis of this reflecting-sheet problem gives insight into the
basic diffraction behavior of small aperture antennas which radiate
into over-dense plasmas. The analysis is applicable for spacecraft
reentry situations in which the plasma medium can be adequately
modeled by a simple reflecting sheet.

The same problem with small wedge angles (less than 70°) has
been formulated using plane waves to describe the interactions between
the waveguide and the reflector.' The ground-plane mounted guide was
analyzed by successively bouncing cylindrical waves. For that case
only two component cylindrical ‘waves result from the scattering of an
incident cylindrical wave by the ground plane with a waveguide aperture.
In this report a similar superposition technique will be used to describe
the scattering by the waveguide wedges for guides with large wedge
angles (70°-90°). However, four cylindrical wave components result
in this case.

B. Background

The incident TEM mode within the parallel-plate waveguide propa-
gates as shown in Fig. l and is assumed to have a unit amplitude magnetic
field parallel to the guide walls. Integration of the Poynting vector, which
is uniform across the guide, over the guide cross section yields the power
flow per unit depth of the guide as ( Zya), where Z, is the free-space
impedance and (a) is the width of the guide. The modal current is then
given by

(1) I, =~Na

o]

Equivalent line sources with omni-directional patterns are em-
ployed in the subsequent analyses. The modal current I of an isotropic
line source is related to its radiated magnetic field H, diffraction
coefficient D, and ray R by

. s L
-jkr+ j4 —j(kr+ Z) -jkr
e e e
(2) H=1 = R = D
2mr N 2nkr NrT

The response of a guide to an equivalent line source is obtained through
reciprocity and given in terms of modal current ratio as**



I
(3) R A H(r,8)

IT 21a

where IT is the modal current of the transmitting line source, IR is the
receiving guide modal current, and H(1r,0) is the field of the guide at
the line source location when the guide is transmitting with a modal
current I, = Na .

The free-space reflection coefficient, I'g, of the waveguide (that
is, with the guide radiating into free space) is given by®

i
(4) l_‘s=I_’—‘lﬂ[Dl(llJl=0)+D?.(‘l»‘2=0)]eJ4 ,

I 2 a

where D (3 =0) and Dy( ¢, = 0) are the total diffraction coefficients
for edges 1 and 2 corresponding to the rays diffracted back along the
inside of the waveguide walls.

C. First-Bounce Wave

The near-zone fields of a guide in free space may be computed
as discussed in Reference 1, Section IIA, by including the geometrical
optics, and the singly diffracted and the doubly diffracted contributions.
Calculations of the field distribution of the parallel-plate waveguide
obtained by the above method indicate that the radiation from the guide
in the vicinity of the projected guide aperture may be treated as that of
a cylindrical wave with its source at the center of the aperture. This
free-space wave, calculated at a distance ( 2R) from the aperture,
represents the reflected wave incident on the guide aperture coming from
the conducting sheet, located at a distance ( R) from the aperture. This
reflected wave is called the first-bounce wave.

Because the first-bounce wave is cylindrical, an equivalent line
source located at a distance (2R) on the guide axis may be introduced
to compute the first-bounce contribution to the reflection coefficient by
using the line source to waveguide coupling expression of Eq. (3). The
modal current of this equivalent line source is related to the first-bounce
magnetic field at the center of the guide aperture by Eq. (2) and is given
by

. T
( 5) 1(;)1 = NZa(2R) e JK(2R)-i% Hyp



where Hp is the free-space magnetic field radiated by the guide at a
distance ( 2R) along the guide axis as computed by the method in
Reference 1. Line source to waveguide coupling then yields the modal
current induced in the guide by the first-bounce wave as

(6) Ig) =I(e1q)l 2w
2Tma

The contribution to the reflection coefficient by the first-bounce wave
is thus given by

o~

1)

J

0
(7) r R _1
IO

gl

(1)
= qu _)\_
a 27

Hp

For the ground-plane mounted gui(:'lel’2 the scattering of the first-
bounce wave by the guide aperture causes a second-bounce wave com-
posed of two component cylindrical waves. As shown in Fig. 2 the
second-bounce wave is composed of the reflected geometrical optics
field from a ground plane and the aperture component which is very
similar to the scattered wave from a rectangular wall.
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Fig. 2. Application of superposition to line source field
diffraction by a ground-plane guide aperture.
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For the large wedge angle case (70°-90°) considered in this
report, the waveguide scattering mechanism with an incident cylindrical
wave causes four subsequent component cylindrical waves, as will be
discussed in the following sections.

II. BACKSCATTERING MECHANISM OF THE
WAVEGUIDE WITH AN INCIDENT
CYLINDRICAL WAVE

A. Actual Guide Backscattering

In order to calculate the higher-order interactions between the
waveguide and the reflecting sheet it is necessary to analyze the back-
scattered field from a line source illuminating the guide. As discussed
in Section I, the free space radiation of the guide is reflected by the
conducting sheet back onto the guide as a first-order interaction or bounce.
The backscattering of the first-bounce wave from the waveguide gives rise
to a second-bounce wave which reflects from the conducting sheet back
onto the guide. This process continues, leading to higher-order inter-
actions.

Each bounce wave or interaction can be treated as a superposition
of cylindrical waves. Consequently, the succeeding bounce wave can be
analyzed as the superposition of the scattered waves from each
cylindrical wave component. In this section the scattering of an incident
cylindrical wave by the waveguide wedges will be analyzed. As shown in
Fig. 3 the guide is illuminated by the cylindrical wave from a line source
located at radius p. The scattered wave which reflects from the sheet
back onto the guide is the scattered wave incident on the image guide as
shown in Fig. 3. For this reason the fields will be calculated in the
plane normal to the guide axis at 2R from the guide, where R is the
distance from the waveguide aperture to the reflecting sheet. Because
of the symmetry of the problem involved, as shown in Fig. 3, only the
upper half-space (x = 2R, y 2 - a/2) will be used throughout this analysis.
The field value at an arbitrary observation point (x = 2R, y) is calculated
by adding the geometrical optics, single diffraction, and double diffraction
components.

The geometrical optics component of the scattered field is analyzed
in terms of the image of the illuminating line source in the upper wedge.
In terms of the coordinates (x,y) referred. to edge @ of the waveguide,
the image line source is located at (x',y'), as shown in Fig. 4. Let
Ymin be the vertical distance to the reflected field shadow boundary in
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Fig. 3. Cylindrical wave backscattering geometry.

the plane of observation (x = 2R). Then the geometrical optics field
component [HGO( 2R,y)] is given as

. + 3 m
[Ie_Jkri I 4
_ ’\/21'rri

Y 2 Ymin

(8) H 2R,y) =

GO(

0 Y £ Ymin ’

where r; is the distance from the image line source to the point of
observation (2R, y) and is given by

(%) S T

The near-zone formulation for cylindrical wave diffraction as
given in References 3 and 4 is used to determine the singly diffracted
components of the field at (2R,y). The geometry for the analysis of
these components is shown in Fig. 5. The single diffracted field from

edge @ [H(ll) (2R, y)] is given by
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the geometrical optics component.

( 10) gV zr,y = v x D,

where
Iy I'O

-jki{ry + r. -
(1) e J (1 (o] r1+ r0> -
(11) U = [VB(—LO— , Ot a)

Nry +1‘o

) +r
and
i%
Ie
12 D. =
(12) N
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Fig. 5. Backscattering field plot geometry-
the single diffraction component.

Therefore,

™ . ryr
iz -Jk (rl Frg - > )
e e r1+r0

NZw NT T,

(1) _
( 13) Hl (ZR’ Y) -

ryr rirg
" ["B(—L oura) @ o e, )]

The singly diffracted field from edge @ [Hgl) (2R,y)] is given by

._11 k( IrTg
(14) H(l) (2R,y) = IeJ4 s« £ IE\Fao - T+ ro)
2 a4 N2 Nrp+rg

T2To 2T »
X |V —_— - + V —_— - -
[ B<r2+ ro y @ 92) B(rz+ ro > 2w 62 a)] .
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The singly diffracted wave from each wedge illuminates the opposite
wedge. This wave in turn diffracts from the second wedge and contributes
to the total field at the observation point (2R,y). The doubly diffracted
field from edge @ [Hi“ (2R,y)] is determined from the geometry of
Fig. 6 and is evaluated as follows:

a
—jk(a+ ry - =2
e ro+a,

'\la+ro

wlvo(2To |« -I) sy (2xe , 37 .
[VB(a.+ro * 2) VB(a+r0 2 *

LT
(1) (1) 1% jka
(15) DiG =Dyg = = XNE & %

and
-jk(a+r1 - ar )
(2) e a-+ Iy
(16) U, =
Na + 1
ar; T ar; 37
X + + —
I:VB(a+ T 2 91) VB(a+r1 2 * 91)] !
then
(2) (1) 2
(17) H; (2R,vy) =D, XUg)

Similarly, the doubly diffracted component from edge 2 is given by
. ara
-jkla+try -
e J ( 2 a+r2)

\}a+r2

(18) ng) =

Then
(2) (1) (2)
(19) H, (2R,y) =D,g X U;
1
Equation ( 15) states D(lé = (zlc); » which results from the general symmetry

about the guide axis.
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Fig. 6. Backscattering field plot geometry-
the double diffraction component.

Finally, the value of the total field [Hy(2R,y)] scattered from
the actual waveguide at an arbitrary observation point ( 2R, y) is the

sum of each component as given by

(20) Hp(2R,y) =H_ (2R,y) +H{" (2R,y) + B} (2R, y)

+ H(12) (2R,y) + ng)( 2R, y)

B. Representation of Solid Wedge Scattering
by Cylindrical Wave Components

In order to apply wedge diffraction theory it is necessary to
represent the scattered wave in terms of cylindrical wave components.
In view of this the scattering from the waveguide wedges is represented
in terms of scattering from the solid wedge and that resulting from the
aperture (denoted as the aperture component). The aperture component

10
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is the scattering from the complement of the solid wedge, as shown in
Fig. 7, and is similar to the backscattering by a conducting strip of the
same width. Thus the aperture component is well approximated as a
cylindrical wave.

In this section the wave scattered by the solid wedge is determined
for an arbitrary incident cylindrical wave and found to be adequately
described by three cylindrical waves in the most general case. The field
[HTS( 2R,y)] at the observation point (2R, y) as scattered by the solid
wedge is given by the sum of the geometrical optics field [HRS( 2R, y) ]
and the singly diffracted field [ Hpg( 2R,y)] . With the aid of Fig. 8 both
these terms are computed as

TsP

I
-ik + ! o s
e J (rS P rS:F p') IeJZF
(21) Hpg(2R,y) = X
sty s Nez
rop r.p' )
X s, - + sP__, 2w - 2WA -
[V (rs+p' Gs) VB(E:-F—[S—’_ ™ W 04
and
,
0 Y < Ymin
(22) Hrg(2R,y) =7
L
il 4 i
Ie Jkrl 4 > 1
Y 7 Ymin
Z‘ITl'i ’
\
where y' . is the vertical distance in the field plot plane from the guide

axis to the reflection shadow boundary. Thus the total field scattered by
the solid wedge is given by

(23) Hrg(2R,y) = Hrs(2R,y) + Hpg(2R,y) .

The first cylindrical component determined from the scattered
field by the solid wedge is the diffracted component. Before attempting
to ealculate this component it is necessary to present two general aspects
of our theory. First, the diffracted field from a wedge is approximately
cylindrical provided the observation point is sufficiently removed from
the shadow boundaries (20° on either side}). Second, the field of interest

11
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Fig. 8. Backscattering by the solid wedge.

is only that in the near zone of the projected guide aperture. Because
of these aspects the problem divides into two cases.

Case I: If the projected upper edge of the guide (y = 0) is less
than 20° below the shadow boundary, then the diffracted term
is determined from the diffracted field value at the point 20°
above the shadow boundary (y = y;), as shown in Fig. 9a.

Case II: If the projected upper edge of the guide (y = 0) is at
least 20° below the shadow boundary, then the diffracted term
is determined by the diffracted field value on the guide axis
(y = -a/2) in the field plot plane, as shown in Fig. 9b.

These two cases result in necessarily different calculations and are
studied separately as follows:

13
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Case I

The diffracted component is a cylindrical wave radiated by a line
source, whose current (Ip) is determined from the diffracted field
value at the observation point (2R, y,;). The position of this equivalent
line source is at the apex of the solid wedge. It follows that

m
jkrg =iz
(24) Ip = Hpg( 2R, ya)NZrrg e © %

where rg is the distance from the apex to the observation point (2R, y3).
Then the diffracted component which approximates the actual diffracted
field is given by

. T
I -Jkrp* 37

[
(25) Hpa(2R,y) = —2 ,

21'er

where rp is defined in Fig. 10.
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, !
- pD — -

GUIDE AXIS \
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Fig. 10. The equivalent line source representing the
solid wedge diffracted field (Case I).
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The geometrical optics field reflected from the solid wedge is not
directly applicable to this analysis because its radiated field is discon-
tinuous. Consequently, a uniform cylindrical wave which approximates
the geometrical optics field is determined. The source for this geo-
metrical component is a line source located on the guide axis at a
position (pR) from the x = 2R plane as shown in Fig. 1l. The position

GEOMETRICAL OPTICS
FIELD PLOT PLANE

DR

5
Hes (2R,~92)
2a

Hgg (2R, 972)

Fig. 1l. The equivalent line source representing the
solid wedge reflected field.

(pp) is determined by the phase difference (Aq) ) in the actual reflected
field [ HRg(2R,y)] at the observation points (ZR, a/2) and (2R, 5a/2).
By geometry

16a* , 8¢
(26) PR = Ad);{ - 5a +-—4— ,

where A¢p = phase difference in wavelengths. The current (Ig) for the
geometrical component is calculated from the true geometrical optics
field [HRS( 2R, Y)] at the observation point (2R, a/Z) and is given as

16



v
: jkp1 - 7
(27) Ip = N2mp; e Hgg(2R,a/2)

where p; is the distance from the line source to the observation point
(2R,a/2). Then the geometrical component which approximates the
geometrical optics field is given by

. T
In e'JkrR+ iz
(28) Hpa(2R,y) = ,

N ZTrrR

where rp is the distance from the line source to the observation point
(2R, ).

By subtracting the approximate geometrical optics and diffracted
fields from the true solid wedge scattered field, there is found to be a
residual error in the approximation, which is of particular interest in
the region from the shadow boundary to the guide axis. This deviation,
which has the form of a cusp, is attributed to the discontinuities in the
reflected and diffracted fields across the shadow boundary. These dis-
continuities are such that their sum gives a continuous total field but not
a field that can be adequately represented by two uniform cylindrical
waves. However, it is found that this deviation field is not great and
for all practical purposes can be represented as a uniform cylindrical
wave. This cusp component, which approximates the deviation field,
has a line source positioned along the guide axis at a distance p~ from
the x = 2R plane as shown in Fig. 12. The magnitude of p- is determined
by the phase difference ( Adg) in the deviation field [ Hyg(2R,y) -
(Hpa(2R,y) + HRa(2R,y) )] at the observation points ( 2R, -a/2) and
(2R, a/Z) . Hence,

a? Adg

2004 2

(29) Pc =

The current ( I) for the cusp component is computed from the deviation
field at the observation point (2R, -a/2) and is given by

™
ikpg - ig
( 30) Ic =NZmpg ¢ C 4

X[Hza(2R, -2/2) + Hpa(2R,-2/2) - Hyg( 2R, -2/2)] .

17
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Thus, the resulting cusp field [HCA( 2R, y)] that approximates the

deviation field is given by

m
"jkrc + J T

Ice

where T

observation point (2R, y) as shown in Fig.

N ZTI'I'C

is the distance from the cusp line source position to the

12.

Finally, the approximate total solid field [HATS( 2R, y)] is the
sum of the three components as given by

(32)

Hprs(2R:y) =Hpa(2R,y) + HRa(2R,y) - Hoa(2R,y).

Calculations have shown that this resulting approximate field describes
the true solid-wedge scattered field very adequately in the near zone of

the projected guide aperture.
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Case II

If the projected upper edge of the guide aperture is at least 20°
below the shadow boundary, then the approximate total solid field
[HaTs( 2R, v} ] is adequately described by a single cylindrical wave
because of the cylindrical nature of the diffracted field across the
projected guide aperture. Again, the diffracted field is generated by
a line source located at the apex of the solid wedge. However, the
current (Ip) is determined by the true solid-field value at the obser-
vation point (2R, -a/2) and is given as

W
Jkppy -iz
(33) Ip = NZmp, e D% [Hpg(2R,-a/2)]

where pp is the distance along the guide axis from the apex to the
x = 2R plane, as shown in Fig. 13. With this line source known, the
approximate total solid field is computed as

. LT
1, e L T
(34) Hprg( 2R, y) = ;
ATS ,-—znrﬂ

where ry is the distance from the edge to an arbitrary observation
point (2R, vy).

3

y
/X / HTS(ZR’y)
—_— — ——— X ("
i 1,
P M Hrg (2R, "9%)

A D
4

4

Yy
j TOTAL SOLID
FIELD PLOT PLANE

Fig. 13. The equivalent line source representing the
solid wedge diffracted field (Case II).
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C. Aperture Component of the Scattered Field

The difference between the approximate total solid field
[HATS( 2R, y)] and the true waveguide field [ Hp(2R,y)] is attributed
to the presence of the waveguide aperture and is basically a cylindri-
cal wave from the center of the aperture. Consequently, the aperture
component is approximated as that radiated from a line source. The
position (p,) of this aperture component line source is calculated from
the phase deviation (A¢,) between the difference field [Hr(2R,y) -
Hprg( 2R, y)] at the observation points ( 2R, -a/2) and (2R,0). With
the aid of Fig. 14,

(a/2)° A,

(35) P = -
A 284, 2
(2R,Y)

y o¢

WA O Sk

X
\ . -H; (2R,0) + H, pg (2R,0)
A
I
a—-—=aA PA )-HT(ZR’_%)"'HATS(ZRv _0/2)

| )

WA

DIFFERENCE FIELD
PLOT PLANE

Fig. 14. Equivalent line source representation
of the aperture component.

The current (I,) associated with this source is specified by the differ-
ence field [—HT( 2R, vy) + HATS( 2R,y)] at the observation point ( 2R, -a/Z)
and is given by

. LT
jkpp -ig

(36) I, = N2mp, e [Hr(2R, -a/2) + Hy p5(2R, -2/2)]

20



Then the aperture component [ Hp(2R,y)] is computed by the general
line-source field formula as

. T
- F 1=
IA e JkrA J4
(37) HA(2R,y) = .
’VZTTrA

where r, is the distance from the source to the observation point (2R, y).

The total field [HTa(2R,y)] scattered by the waveguide wedges is
approximated as the superposition of the approximate scattering from the
solid wedge and the aperture component such that in the most general
case it consists of four cylindrical wave components and is given by

(38) Hra(2R,y) =Hp1g(2R,y) - I—IA(ZR,y).

Whether the approximate field scattered by the solid wedge is described
by three line-source waves (Case I) or by one line-source wave (Case II),
the total field scattered by the waveguide wedges is accurately approxi-
mated. This makes it possible to use our basic theory (wedge diffraction)
in the transient or successive bounce approach, as will be discussed in the
next section.

III. REFLECTION COEFFICIENT ANALYSIS

As discussed in Section I, the first-bounce wave of the waveguide
may be approximated by an equivalent cylindrical wave. The reflection
coefficient contribution of the first-bounce wave is then given by Ea. (7).

Using the mechanism of cylindrical wave scattering as derived in
Section II, the first-bounce cylindrical wave, when scattered by the
guide aperture, produces a second-bounce wave composed of four ( Case I)
or two (Case II) component cylindrical waves. As shown in Fig. 15 the
second-bounce wave is seen to be that from the superposition of four
(Case I) or two (Case II) equivalent line sources.

The reflection coefficient contribution §rom the second-bounce
wave is computed in the same manner as T’ ,» the first-bounce
contribution. Using the line source to waveguide coupling expression
of Eq. (3) and the approximate line sources (currents and locations)
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as determined by the method of Section II, the second-bounce reflection
coefficient contributions are given by

{2

(39) r® = S | a6
( 40) r® (2= %S) \zzw Ho(pl))
(41) 1“(2’(3)=§§—) — H(p®)
and )

(42) r® = 2 |5 =508 .

where H is computed by the method in Reference 1, Section IIA. The
total second-bounce contribution to the reflection coefficient is then
given by

4
(43) r =Z r(?) (n)

n=1

It should be noted that only the situation for Case I, where there
are four resultant line sources, is shown in Fig. 15. For Case II,
only Ip and Ip will be present. The computer program used in the
computation is designed to automatically decide from the geometries
whether Case I or II should apply. Subsequent discussions will treat
only the more complicated Case L

In a manner similar to the generation of the second-bounce wave
with its four cylindrical components by the first-bounce wave, each of
the four cylindrical components of the second-bounce wave will in turn
be scattered by the guide and form four subsequent cylindrical waves.
These then reflect from the reflecting sheet to form the third-bounce
wave. Thus the third-bounce wave will have a maximum of sixteen
line sources, as can be seen in Fig. 16. The reflection coefficient
contributions from the third bounce are then computed in exactly the
same manner as that from the second bounce.
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The iterative process of Fig. 16 is continued to calculate the
higher-order bounces. The total reflection coefficient is then given
by the summation of all bounce contributions as

(44) rT=rS+Z Z r(n) (m ,

where the superscript (n) denotes the bounce order.

IV. RESULTS

Calculations of the total reflection coefficient of the large wedge
angle guide illuminating a perfectly reflecting sheet were made with the
aid of a Scatran program on the IBM 7094 digital computer. Values were
computed for various guide geometries and for reflector spacings ranging
from 0. 6\ to 1. 5\. Depending on wedge angle, either three or four
bounces were used in the computations.

In order to economize computation time, the following approxi-
mation is used. From sample calculations at selected reflector spacings,
it was found that the contribution of each bounce wave to the reflection
coefficient, when plotted versus the reflector spacing, exhibits a magnitude
variation -very close to an exponential decay and a nearly linear phase
variation. By calculating the reflection coefficient at widely spaced
reflecting sheet locations, the exponential decays for the magnitudes of
the various bounce components and their corresponding linear phase
variations were determined by curve fitting approximations. The phasor
sum of these bounce component curves with the self-reflection coefficient
then yields the total reflection coefficient with a minimum expenditure of
computer time.

Figures 17 through 26 show the results for a 0. 278\ guide for
various wedge angles. In Fig. 17 the magnitude of the bounce contri-
butions to I' is shown as a function of reflector spacing for wedge
angles equal to 75°, 85°, and 90°. The results for the ground-plane
mounted guide (WA = 90°) were computed in Reference 1, Chapter V.
It can be seen that the higher-order bounce contributions become less
significant as wedge angle decreases.
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Figures 18 and 19 give the magnitude and phase of the total re-
flection coefficient for the 75° wedge angle case as computed by both
the cylindrical wave approach of this report and the plane wave method
of Reference 1, Chapter IV. Only the first three bounces were needed
to obtain good convergence for the cylindrical wave approach. The
measured results were obtained with a sectoral horn!s®> simulating the
parallel-plate waveguide.

Comparison between the reflection coefficient magnitude and phase
as computed by both the plane-wave approach and the cylindrical-wave
approach with three bounces is shown in Figs. 20 and 21 for the 80°
wedge angle case. The 85° wedge angle case is shown in Figs. 22 and 23,
with the results including both three and four bounces for the cylindrical
wave approach. Figures 24 and 25 present the comparison for the 88°
wedge angle case. Figure 26 gives the reflection coefficient magnitude
as a function of wedge angie as computed by the cylindrical wave method.
It is apparent from the above figures that as the wedge angle approaches
90°, more and more bounce contributions must be summed before
convergent results can be obtained. However, because of inherent
numerical inaccuracies in the computer program, only up to four bounces
were considered, even though the analysis can yield many more.

The results for a 0. 423\ wide guide are shown in Figs. 27 through
30. Figures 27 and 28 give the reflection coefficient magnitude and
phase for the 75° wedge angle case computed by both the plane-wave
method and the cylindrical-wave method with three bounces. Four
bounces were included in the results for the 85° wedge angle case in
Figs. 29 and 30.
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V. CONCLUSIONS

The reflection coefficient for the large wedge angle parallel-plate
waveguide operating in the TEM mode and illuminating a perfectly re-
flecting sheet was analyzed by wedge diffraction techniques. With this
analysis and those in References 1 and 2 a complete coverage of wedge
angles is achieved.

Good agreement is obtained between the results calculated by the
cylindrical wave method of this report and the plane wave method of
Reference 1 in their mutual regions of validity; i. e. , at wedge angles
from 0° to 80°. Good agreement is also obtained with measurements.

Computations made from this analysis indicate that the plane-
wave approach is useful for wedge angles as large as 85°. 1In facta
major contribution of this cylindrical-wave analysis is to check the
validity of the plane-wave approach.

Based on the bounce analysis the reflection coefficient is seen to
converge more rapidly as a function of the number of bounces included
when the wedge angle decreases. In fact, for the 75° wedge angle case
only three bounces are required.
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